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I. Introduction
Diagnostic studies are essential to the understanding of atomization, ionization, and

excitation processes that occur in spectroscopic sources (e.g., flames, plasmas, etc.). In

the course of such studies, it is often necessary to resolve spatially the processes being

investigated. In the past, these studies almost exclusively have utilized lateral-projection

data collected from a single viewing direction. These data are the integrated signals

produced by the object along the viewing direction and therefore require post-processing

to produce the true three-dimensional spatial structure of the source under study.

For the special case where the source can be shown to be optically thin and to have a

well defined geometry and position, an area inversion matrix can be calculated and used to

convert the lateral projection data into their spatially resolved equivalents [1]. Here, we

will focus on the most commonly encountered situation where the source is known to

possess circular or elliptical symmetry. Under these circumstances, the inverse Abel

transform can be applied to the lateral projection data to obtain the spatially (radially)

resolved information [1-41.

Although the inverse Abel transform (the "Abel inversion") is perhaps best known for

its applications in astrophysics, analytical spectroscopists have also applied it to atom

reservoirs in atomic spectroscopy [1,5-7]. One analytically significant spectroscopic

source which has been widely investigated via inverse Abel-transformed data is the

inductively coupled plasma (ICP). The radially resolved information made available by

this technique allows the events in the plasma to be probed in a non-invasive manner and

can be used to determine atomization and excitation conditions within the ICP under typical

analysis conditions.
Despite the obvious utility of the inverse Abel transform, it suffers from several

significant limitations including an intolerance to noise in the input data, and the

requirement for a known geometry in the object under investigation.* In practice, an

observed lateral profile will always contain some noise. The sensitivity of the inverse

Abel transform to this noise often necessitates the use of elaborate smoothing and filtering

techniques before the data can be inverted [5-71. Furthermore, lateral-projection data

are often not symmetric, even when the object under investigation is thought to be so

* For the examples presented in this paper, when the inverse Abel transform is

discussed, the transform for circularly symmetric data will be assumed. When the
elliptically symmetric transform is used, an a priori knowledge of the
eccentricity of the ellipse is required for the area inversion matrix to be
calculated. Consequently. this is a less commonly encountered application of this
transtorm. However, many of the same arguments for the circularly symmetric
transform can be extended to the elliptically symmetric transform.



[5,8]. In this case, the choice of the center point about which the data will be transformed

becomes critically important. Small changes in the selected center of symmetry can
result in significant differences in the transformed data. More important, the existence of

an asymmetric projection violates the basic assumption of circular symmetry which is
required for the rigorous use of the inverse Abel transform. Thus, no matter which point

in the asymmetric data set is selected as the center, a "true" reconstruction of the original

object can never be obtained from this transform. Any additional structural information

contained in the lateral projection is lost by transforming the data in a way which forces

circular symmetry. Nevertheless, researchers continue to apply this transform to lateral
projection data which are obviously asymmetric. Several attempts have been made to

modify the Abel-inversion process to accept asymmetric data and to return meaningful

radially resolved data [9,10. However, the resulting spatial maps are, at best, useful

only for gaining a qualitative understanding of spectroscopic sources.
Yet another problem with the inverse Abel transform is that it generates the greatest

uncertainties in the reconstructed data for points in the central region of a calculated
radial profile [4]. This limitation is particularly troublesome in the investigation of

sources such as the ICP, where the region of greatest analytical interest is in the center of

the discharge.

Fortunately, many of the foregoing problems can be overcome by reconstructing an
image with a more general computed-tomography (CT) algorithm. In a strict sense, the

inverse Abel transform is a form of CT. However, for the purposes of this paper we will
consider CT to include only those techniques which assume no special symmetry in the

object under investigation. Since CT requires no preliminary assumption of symmetry,
the problem of selecting the symmetry point is eliminated. Moreover, the impact of

random noise on the acquired data is much less severe in the reconstructed image with
most CT approaches than with the inverse Abel transform. As a result, information about

the center of the object can be more reliable.

In the studies presented here, mathematical models (phantoms) which describe an

objct tn be studied and projections from those phantoms were calculated. Reconstructed
images based on these projections were then computed utilizing several popular CT

algorithms. These results reveal that many of the problems which plagu, the use of the
inverse Abel transform can be overcome. In particular, the CT reconstruction algorithms

that are explored exhibit su:perior freedom from thp effP.te, nf noise in the iiiput data.

Additionally, if suitable care is taken while data are collected, the information content of

the reconstructed image can be markedly improved.
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2. THEORY

Image reconstruction from projections is a problem which has its history in the early

roots of the modern physical sciences. The primary goal in image reconstruction is to

determine the distribution in space of the species which give rise to, or perturb a signal of

interest. Although initial attempts !o address specific parts of this problem can be traced

to the nineteenth century, JOHANN RADON's classic 1917 paper [11] is generally

considered to provide the first practical solution to the general problem and to lay the

foundation for what has developed into the modern field of computed tomography. Briefly,

RADON posed the following problem. If the lateral projections of an object of arbitrary

shape are known for all projection angles €, can an accurate picture of this object be

constructed from only this information? His solution to this problem was to develop a

line-integral formula (now known as the Radon transform) to perform the necessary

mathematical operation. If projections from all angles are known, this formula can be

used to estimate from the projections the true spatial features of the object under

investigation. Unfortunately, under practical analysis conditions, projections cannot be

collected at all possible angles. Therefore, a number of algorithms have been developed
which are based on the Radon transform but which allow an estimate of the object under

investigation to be calculated from a discrete number of projections. Since the successful

introduction of these algorithms, CT has found widespread application in the physical and

biological sciences, with particular emphasis being placed, in recent years, on the use of

CT for medical imaging.

To understand the ramifications of computed tomography, we must consider two

transform spaces: feature space and Radon space. Feature space is the Euclidian space

described by traditional geometric principles. In feature space would be found the real,
point-by-point spatial feati es of an object. For the purpose of the following discussion

we shall consider feature space to have two dimensions, although the arguments presented

here can easily be generalized to any number of dimensions (n). Radon space is where the

Radon transform of feature space exists. Untreated projection data collected in the

laboratory would lie in Radon space. Radon space can also have any number of dimensions,

although the two-dimensional case will again be used here for simplicity.
When lateral-projection data are collected, they are the Radon-space representation of

the object under investigation. To reconstruct the image, one n,-cd only transform the data

from Radon to feature space. Hence, it is the transform of these Radon-space data to

feature space which is 'he operation used to reconstruct an image from its lateral

U
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projections. The inverse Radon transform in a polar-coordinate system is shown in Eqn.
(1) l

f(r,0) 1dqd2C 2 fq'- q aq dd 1

where q' = sin(e-0), q is the position on the projection from the arbitrarily assigned

central position (e.g., the position on the detector array), 0 is the projection angle, and 0
is the angle in the arbitrarily established coordinate system referenced to a point in the
reconstruction currently under consideration. If the geometric limitation of circular

symmetry is imposed upon the object, all projections are equivalent (e.g., independent of

angle 0) and Radon's formula reduces to Abel's transform equation. Further discussion of

the mathematical intricacies of the Radon transform can be found in the monograph by
DEANS [12].

Unfortunately, there is no widely applicable and efficient algorithm to perform

directly the inverse Radon transform; consequently, it is rarely used explicitly. Instead,
other procedures are usually substituted. Several of the more popular reconstruction

algorithms are described below. It will not be attempted here to describe the procedures
in mathematica! detail; instead, their range of applicability and utility will be assessed.

The reader is directed elsewhere [13-201 for more detailed descriptions of the

mathematics behind each of the reconstruction methods.

2.1. Backprojection

Backprojection [13-16], the simplest of the reconstruction methods, is illustrated

schematically in Fig. 1. Consider a square, homogeneous object contained in some

observation plane XY (the section of a It n ogeneous cube indicated on the top of Fig. 1). If
lateral projections of the object are collected along the x and y axes, a crude

reconstruction of the original object can be obtained by reversing the projection process

(backprojection). This reverse operation is shown on the bottom of Fig. 1. In this
method, each section of the ray which generates one point in the lateral projection is

assumed to contribute equally to the signal. Conceptually, the process of backprojection

can be thought of as smearing the lateral projection across an area of feature space where

the reconstuction is to be formed. The reconstructed image is generated where the rays

sum together. The density at each point in the reconstructed image can be estimated by the
sum of all rays which pass through that point. As projections from additional angles are 0

collected and backprojected, the reproduction more closely resembles the original object.

* 4
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Repeating this exercise with an object of more complicated geometry reveals that the more

complex the structure, the greater the number of projections which are needed to generate

an accurate reconstruction. Consequently, in practice, a large number of projections are -,

usually collected at different angles around the object.

The primary advantage of backprojection is its conceptual simplicity and ease of
implementation. Unfortunately, backprojection does not reproduce the irnage as faithfully

as do other reconstruction methods. Because the backprojected signal is averaged along its

entire optical path, star-like artifacts are observed extending from the object of interest
(the lightly shaded region in the bottom part of Fig. 1). These artifacts result in an

overall blurring of the reconstructed image. However, if each lateral projection is

convoluted with an appropriate filter function before it is backprojected, these star-like
projections can be reduced or eliminated; in addition, noise can be reduced and desired

features enhanced in the reconstructed image. This method, known as the filtered

backprojection or convolution method [13-181 has been shown to enjoyconsiderable

freedom from the effects of noise in the input data [181.

To illustrate the filtered backprojection approach, consider the example in Fig. 2.

Figure 2A shows a lateral projection of calcium atomic emission (422.7 nm) obtained low

in an ICP discharge. Figure 2B shows a selected frequency-domain convolution filter, in

this case a Parzen filter multiplied by a ramp function (PARZN filter). Details

concerning this and other suitable filters can be found elsewhere [17. The convolution
process is implemented by Fourier transforming the lateral-projection data, followed by

a multiplication of the transformed values by the frequency-domain filter. The inverse
Fourier transform of this product is the convoluted or "filtered" projection (Fig. 2C).
The relative ease of implementation of the convolution method, its speed of execution, and

the accuracy of the reconstructed image make this method the most popular for

reconstruction of data obtained by the collection of parallel beams.

2.2. Rho-Filtered Layergram
As mentioned previously, the backprojection method produces a blurred estimate of the ,

original object. The rho-filter layergram (RFL) reconstruction method attempts to

alleviate this problem by post-processing of the data after the backprojection. With this _]

technique, the image produced by backprojection is subjected to a two-dimensional

Fourier transform. The resulting data are then multiplied by a suitable filter function and
the product subjected to an inverse two-dimensional Fourier transform. As with the

convolution method, choice of the appropriate filter function is critical for an accurate
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reconstruction to be produced. Furthermore, aliasing of structures near the edge of the
reconstruction region can be a problem [13,17].

2.3. Fourier Inversion
An alternative method for image reconstruction uses a path through Fourier space

[13,15,19,20]. It can be shown [121 that the relationship among feature, Radon, and
Fourier space is:

Feature R, Radon
Space -*S

Sa Space

Fourier
Space

where Rrefers to a Radon transform and F refers to a Fourier transform. The subscript

1 indicates a one-dimensional transform whereas a subscript n pertains to an n-

dimensional transform. The superscript -1 designates an inverse transform.
Simply stated, a series of one-dimensional Fourier transforms of Radon space followed by
an n-dimensional inverse Fourier transform is equivalent to an n-dimensional inverse
Radon transform of Radon space. This connectivity allows the equivalent of Radon or
inverse Radon transforms to be computed when the Fourier transforms are known or can

be calculated. Practically, to reconstruct an axial slice from an emission source, each
lateral projection is Fourier transformed and then mapped into polar raster space. These
data are interpolated to map this polar coordinate information onto an x-y grid. Finally,
an inverse two-dimensional Fourier transform is computed to generate the reconstructed
image. This process is shown schematically in Fig. 3.

The availability of high-speed discrete Fourier-transform algorithms makes the path

through Fourier space an attractive reconstruction approach. Unfortunately, the
Fourier-reconstruction method is somewhat sensitive to noise in the original projection

data. In addition, aliasing of structures near the edge of the reconstruction region can

occur. Consequently, the convolution method is usually favored over the Fourier path.
However, a recently introduced direct Fourier-inversion algorithm promises improved
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fidelity in the reconstructed image while maintaining the advantage of reconstruction

speed [21]. S

2.4. Iterative Reconstruction Techniques Z1

A final class of techniques for image reconstruction, which will not be explored

extensively in this paper, is known collectively as the iterative reconstruction methods

[13-161. These techniques estimate the image to be reconstructed, and modify the
estimate iteratively so the predicted projections progressively resemble more closely the

projections collected experimentally. An example of how this reconstruction might be

carried out is shown in Fig. 4. The top array of numbers represents the original object
being investigated. The empirically determined projection is indicated on the right side of

this array and consists simply of the intensity sum along the respective projection axes.
The reconstructed image is shown in the array at the bottom of Fig. 4. The top number in

each array element represents the initial estimate of the "true" structure of the object.
From this estimate, a projection is calculated along the same angle as the experimentally

determined projection. The calculated projection is compared with the experimentally
determined projection and a correction factor calculated. In this example, the integrated

signal across the top row of the reconstruction estimate equals 11, while the empirically

determined signal was 8. Each array element in the image estimate which contributed to

that data point in the lateral projection is therefore multiplied by 8/11 to obtain the
"improved" estimate of the object's structure (the array numbers in parentheses). Once

the correction has been accomplished for each ray in the projection, the new estimate of

the structure is used to calculate a projection at a new angle. This process is repeated

until the estimated structure generates lateral projections which closely match the
experimentally determined projections.

The images reconstructed by the iterative reconstruction techniques are, in general,

not much better than those determined by the reconstruction methods mentioned

previously and often require much longer computational reconstruction times. However,

the iterative reconstruction methods have achieved recent popularity because they allow
images to be reconstructed from projections collected in unusual geometries which would

not be applicable to the reconstruction methods described previously.

3. COMPUTER SIMULATIONS

Computer simulations were used to investigate the properties of, and to identify

possible problems with several CT algorithms. A summary of these investigations follows.

All simulations were generated on a VAX 11/780 computer (Digital Equipment, Maynard,

" ," :.,,, '?. 0
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Massachusetts). Phantoms, projection data and tomographic reconstructions were

calculated by the SNARK77 program [13]. Unless otherwise stated, absorption projection

data were generated from the phantom at 125 separate projection angies with 99 detector

positions at each angle. Likewise, images were reconstructed with a convolution algorithm

utilizing a bandlimiting filter described elsewhere [13). Symmetric inverse Abel

transforms were implemented with a FORTRAN program based on an algorithm discussed

by BLADES [101. Contour plots of the output data (with 10 equally spaced contour levels)
were generated with the DI-3000 graphics package (Precision Visuals, Boulder,

Colorado) and displayed on a Talaris 800 laser printer (Talaris Systems Inc., San Diego,

California).

3.1. Alternative Reconstruction Methods

Let us first assess the capabilities and limitations of alternative reconstruction

algorithms. A representative and useful phantom, shown in Fig. 5A, contains regions of

both high and low spatial frequency. The density step on the edge of the structure provides

a high spatial frequency for the reconstruction. The constant density in the body of the

phantom has a very low spatial frequency. A reconstruction of this object using the

Fourier path is shown in Fig. 5B. The artificial structure within the body of the

reconstructed object and uneven nature of its borders indicates the limitations of the

Fourier method, particularly when compared with the RFL (Fig. 5C) and convolution (Fig.

5D) algorithms. The differences between the RFL and convolution reconstructions are

relatively small, although the image produced by the convolution algorithm seems to be

slightly more faithful in regions of the object where the intensity is uniform.

3.2. Aliasing

From Fig. 5, it is clear that reconstruction from projections often generates artifacts ,

in the final image. These artifacts are the result of limitations in both the reconstruction

algorithms and the detection system. A thorough understanding of how these artifacts can

arise is critical to the minimization of their effect.

In practice, projections to be used for CT reconstructions must be collected at discrete

angles around the object under investigation. The highest spatial frequency that can be

reproduced in a CT image is determined by the separation of detectors in a single

projection for the image. The Nyquist criterion predicts the relationship

d (2)
2v

where d is the separation between adjacent detector elements or projection positions and v

is the maximum spatial frequency that can be accurately represented. If measurements



are obtained at inter-detector separations greater than distance d, structures will be

aliased and spurious low-frequency artifacts will appear in the reconstructed image.
Analogous arguments can be applied to the number of angles at which projections must be

measured. The minimum number of angles (m) should meet the following criterion for

bandiimiting resolution [161:

m n (3)
2

where n is the number of data points in a single lateral projection. These m number of

scans should be equally spaced over an angle of at I3ast 180 degrees. Failure to meet this

sampling criterion can result in aliasing of object structures. In contrast, if this latter

sampling criterion is exceeded, the reconstructec, image is overdetermined and noise in the
final CT image is reduced. A more complete discussion of the effect of viewing geometry on

the information content of the reconstructed image is presented by KLUG and CROWTHER

[22].

The effect of angular aliasing is depicted in Fig. 6. Figure 6A shows the original
phantom whereas Figs. 6B, 6C, and 6D represent the use of 5, 25, and 125 viewing

angles, respectively, when applied to a convolution reconstruction algorithm with 99
lateral detector positions. As is readily apparent in Fig. 6B, severe aliasing of the object

occurs when projections from only five angles are collected. As the number of projections

increases to 25 and 125 (Figs. 6C and 6D, respectively), the reconstructed image

approximates the original phantom much more closely. Clearly, the accuracy of the

reconstruction is strongly influenced by the number of angles from which the source is
viewed. Of course, the "star pattern" chosen for illustrative purposes here contains
higher spatial frequencies than would be encountered in most spectroscopic sources; this

fact should be considered throughout the following discussion.
The effect of aliasing caused by too few resolution elements in a lateral projection (e.g.,

not enough elements in a detector array) is revealed in Fig. 7. If only 11 detector readings

are collected at each angular position, strong aliasing of the high-spatial-frequency

structures is observed (Fig. 7B). The inability of the reconstruction algorithm to
repicduce the sharp edges of the object is a clear indication of this aliasing. As the

number of detector positions at each angle is increased (33 and 96 in Figs. 7C and 7D,
respectively), these effects diminish until they become almost imperceptible. As in Fig.

6, the regions of the object which display sharp transitions (high spatial frequency)

determine the viewing geometry which is required. Typical spectroscopic sources do not

I
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usually display such sharp structural variations, so a smaller number of viewing

positions might be adequate.

When ipatial frequencies are aliased, another kind of artifact can appear at sharp

boundaries in the image. This artifact, called the Gibbs phenomenon or ringing [16,23],

appears as an overshoot of the density of ti object under investigation near sharp

boundaries. This phenomenon can be suppressed by filtering the spatial frequencies of the

object so there is a "roll-off" of the higher spatial frequencies in place of a sharp cutoff.

Not surprisingly, sucn filtering can also degrade the spatial resolution of the

reconstructed image.

3.3. Other Artifacts
Another common source of artifacts observed in many CT images is variation in the

sensitivity of the detectors when more than one detector is used to collect the projection

data. This effect manifests itself as streaks and swirls in the reconstructed image.

Fortunately, normalization of the detector response can reduce this effect to imperceptible

levels.

A primary requirement for the reliable implementation of CT methods is that the object

under investigation must be stable while all needed projections are collected. If the object

changes or moves during the collection of the projection data, streak artifacts are
introduced into the image. The only way to eliminate this effect is to reduce the period of

time over which the data are collected.

All real data carry noise, and it is desirable for a reconstruction algorithm to be S ..
relatively immune to it. Often, CT reconstruction algorithms contain some type of

smoothing or freruency-domain filtering as an integral part of the reconstruction; such
reconstruction algorithms exhibit a significant tolerance for noise in the projection data.

Furthermore, in CT no single reconstructed spatial data point is determined from a single

projection. This feature gives rise to a type of signal averaging which reduces noise in the

reconstructed image. One example of the capabilities of the convolution CT reconstruction

algorithm to handle noise is shown in Fig. 8. In this example, random noise was added to

each of the lateral projections used to ;3construct the images. Figure 8B shows the

reconstruction obtained when no noise was added to the lateral projections. Figures 8C

through 8F display the reconstructions as noise of increasing amplitude is introduced into

the data. Importantly, reasonably accurate reconstruction is possible even when the

standard deviation of the noise is equal to the signal value (Fig. 8E). Not until he standard

deviation of the noise is ten times the signal amplitude do we observe a significant

distorion in the reconstructed image (Fig. 8F). Of course, in this example, the added
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noise was statistically random. Non-random noise could affect the image in a different

manner. Nevertheless, CT is capable of accepting input data which would be difficult if not

impossible for the inverse Abel transform to handle without extensive prefiltering.

3.4. Comparison of CT and Abel Inversion

To illustrate some of the advantages of computed tomography in situations where

inverse Abel transforms have traditionally been applied, we have generated phantoms

which simulate inductively coupled plasmas of differing geometries and have reconstructed

their images using the convolution CT algorithm and the inverse Abel transform. The

results of these simulations are shown in Figs. 9 through 12. In these examples,

hypothetical projections were collected at 60 different angles with 101 elements in the

detector array. In Figs. 9A and 9B, the three-dimensional and contour plots (feature-

space representations) of a simulated circularly symmetrical ICP are presented,

respectively. In Figs. 9C and 9D the corresponding reconstructed image obtained with the

convolution CT algorithm is shown. In Figs. 9E and 9F the reconstructed images obtained

when lateral projections at right angles to each other were generated by inverse Abel

transformation. The contour plots of the radial data obtained from the inverse Abel
transform are not shown, but they must, by definition, display circular symmetry. Not

surprisingly, for a source which is known to be circularly symmetric, the inverse Abel

transform is superior for reconstructing images both in terms of processing time and

fidelity of the reconstructed image. The CT reconstruction exhibits a relatively high level

of fluctuations in the reconstructed image when compared with the image produced by Abel

inversion. This additional noise can perhaps be explained by the additional degrees of

freedom which must be employed to handle objects of arbitrary geometry. Abel inversion

would therefore be the reconstruction method of choice for sources of circular symmetry

and iow noise. For very noisy sources, extensive signal averaging and digital filtering of

the projection would be needed to generate as faithful a reconstruction as provided by CT.
Figure 10 shows the results of a similar study in which an elliptically symmetrical

phantom was employed. Predictably, the inverse Abel transform produces an image that is

highly dependent upon which lateral projection is used as the input data set. For the two

examples shown here, the lateral projections were collected along the major and minor

axes of the ellipse (Figs. 10E and 10F, respectively). Understandably, the output data

sets differ significantly, even though lateral projections from all positions around the

phantom are symmetrical. If this situation were to occur in a real spectroscopic source

and if an observer were to collect two orthogonal projections, both taken at angles

bisecting the major and minor axes of the ellipse, the lateral data obtained would reduce to
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identical radial properties when subjected to an Abel inversion transform. Obviously,

this coincidence is unlikely, but no more so than the one we have shown to accentuate the

differences. Nevertheless, the CT reconstruction reproduces the phantom with relative

ease, the major difference again being spurious features in the reconstructed image.

In Fig. 11, the elliptically symmetrical phantom has its maximum skewed off center.

Again, the CT reconstruction closely resembles the phantom, but the inverse Abel

transform provides a reconstruction which differs significantly from the phantom. As is

common, the center of "symmetry" used here for Abel inversion was chosen as the peak

intensity. Selection of this center point is critical as previously discussed. If another

criterion for center-point selection were used, the results would be quite different for the

case shown in 11E which is the Abel inversion of an asymmetric lateral profile. Figure

11F represents the Abel inversion of the only symmetric lateral profile obtainable from

this skewed elliptical source. The symmetry of this projection makes the selection of the

center much less prone to error.

In the final example, shown in Fig. 12, the skewed elliptically symmetrical phantom of

Fig. 11 has had a local discontinuity imposed upon it. As with the other examples, CT

reproduces the object with satisfying fidelity. In contrast, the two images reconstructed

by the inverse Abel transform provide misleading information about the object being

investigated. From data collected at one angle (Fig. 12E), the Abel inversion implies that

the phantom is extremely narrow and has a central maximum. The other Abel

reconstruction (Fig. 12F) suggests that the source is very wide and has a central

minimum. Clearly, neither reconstruction is close to the "true" structure. From these

examples we must conclude that applying an inverse Abel transform to data which has even

a small degree of asymmetry is risky and should cast doubt upon any quantitative

interpretations based on those data.

4. CONCLUSIONS

These simulations have shown that computed tomography can be a powerful method for

determining the spatial structure of spectroscopic sources of arbitrary geometry. No

attempt has been made to investigate the properties of reconstruction algorithms for

divergent beam geometry, although such methods exist [13]. The choice of the .

reconstruction algorithm should be dictated by the required fidelity of the reconstructed

image, the computational speed required, geometry of the structures under investigation,

and physical limitations imposed by the instrument which collects the projection data.

Although CT offers a significant improvement over image-reconstruction methods

currently in use by analytical chemists, it does not solve all of the problems which might

r-
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be ert-ountered. A primary assumption behind the tomographic reconstruction algorithms

is that the object being investigated is optically thin. Other, extraordinary measures must

be used to correct for the aberrations introduced by an optically thick source [17, 24].

Other problems can include aliasing of data and the inability of the reconstruction

algorithms to faithfully reproduce discontinuous structures in the object. Despite these
limitations, computed tomography can provide information about an object which would be

difficult or impossible to obtain by other means. In the second part of this series of

papers, the construction and utilization of an instrument for collecting and processing CT
emission data from common spectroscopic sources will be described. Practical examples

of the utility of tomographic image reconstruction will be presented.
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Figure Captions

Figure 1 Illustration of the method of backprojection for a homogeneous, square object in

the X-Y plane.

Figure 2 Illustration of the convolution of a lateral projection, A. Lateral profile of Ca I

emission from an ICP . This profile is the least-square regression polynomial

[5] to Ca I emission at 1 mm below the tip of the initial radiation zone in a

1.25 kW plasma., B. PARZN convolution filter (17] in the frequency domain,

C. Convoluted lateral projection. 4

Figure 3 An illustration of image reconstruction by Fourier inversion. DFT refers to a

discrete Fourier transform, and 2DIFT to a two dimensional inverse Fourier

transform.

Figure 4 Example of the process of iterative image reconstruction. See text for

discussion.

Figure 5 Reconstruction of an object by different CT algorithms. A. Phantom; B.

Fourier path; C. rho-filtered layergram; D. filtered backprojection

(convolution).

Figure 6 The effect of reducing the number of angles (over a total of 1800) at which

lateral projections are collected. A. Phantom; B. Five equally spaced angles; C.

25 equally spaced angles; D. 125 equally spaced angles. Convolution algorithm.

99 lateral detector positions.

Figure 7 The effect of reducing the number of detector positions or elements in each

angular lateral projection. A. Phantom; B. 11 detector positions; C. 33

detector positions; D. 99 detector positions. Convolution algorithm, 125 0

viewing angles.

. f
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Figure 8 The effect of noise in the lateral-projection data on the quality of the
reconstructed image. A. Phantom; B. no noise; C. S/N = 10; D. S/N = 2; E. S/N
= 1; F. S/N 0.1. Convolution algorithm, 99 lateral positions, 125 viewing

angles.

Figure 9 Comparison of inverse Abel transformation and CT for image reconstruction

of a circularly symmetric object. A. Phantom; B. Phantom contour plot; C.
Image reconstructed by CT using a convolution algorithm with 60 viewing
angles and 101 lateral positions; D. Contour plot of image reconstructed by
CT; E. Image reconstructed by inverse Abel transformation from a projection

at 0 degrees; F. Image reconstructed by inverse Abel transformation from a
projection at 90 degrees.

Figure 10 Comparison of inverse Abel transformation and CT for image reconstruction

of an elliptically symmetric object. A. Phantom; B. Phantom contour plot; C. ,
Image reconstructed by CT (same conditions as in Figure 9.); D. Contour plot

of image reconstructed by CT; E. Image reconstructed by inverse Abel
transformation from a projection at 0 degrees; F. Image reconstructed by
inverse Abel transformation from a projection at 90 degrees.

Figure 11 Comparison of inverse Abel transformation and CT for image reconstruction

of a elliptically skewed object. A. Phantom; B. Phantom contour plot; C.
Image reconstructed by CT (same conditions as in Figure 9.); D. Contour plot

of image reconstructed by CT; E. Image reconstructed by inverse Abel
transformation from a projection at 0 degrees; F. Image reconstructed by
inverse Abel transformation from a projection at 90 degrees.

Figure 12 Comparison of inverse Abel transformation and CT for image reconstruction

of an elliptically skewed object with an off-axis hole. A. Phantom; B.

Phantom contour plot; C. Image reconstructed by CT (same conditions as in
Figure 9.); D. Contour plot of image reconstructed by CT; E. Image
reconstructed by inverse Abel transformation from a projection at 0 degrees;

F. Image reconstructed by inverse Abel transformation from a projection at

90 degrees.
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